Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38648963

RESUMO

Approximately 40% of hypertrophic cardiomyopathy mutations are linked to the sarcomere protein cardiac myosin binding protein-C (cMyBP-C). These mutations are either classified as missense mutations or truncation mutations. One mutation whose nature has been inconsistently reported in the literature is the MYBPC3-c.772G > A mutation. Using patient-derived human induced pluripotent stem cells differentiated to cardiomyocytes (hiPSC-CMs), we have performed a mechanistic study of the structure-function relationship for this MYBPC3-c.772G > A mutation versus a mutation corrected, isogenic cell line. Our results confirm that this mutation leads to exon skipping and mRNA truncation that ultimately suggests ~20% less cMyBP-C protein (i.e., haploinsufficiency). This, in turn, results in increased myosin recruitment and accelerated myofibril cycling kinetics. Our mechanistic studies suggest that faster ADP release from myosin is a primary cause of accelerated myofibril cross-bridge cycling due to this mutation. Additionally, the reduction in force generating heads expected from faster ADP release during isometric contractions is outweighed by a cMyBP-C phosphorylation mediated increase in myosin recruitment that leads to a net increase of myofibril force, primarily at sub-maximal calcium activations. These results match well with our previous report on contractile properties from myectomy samples of the patients from whom the hiPSC-CMs were generated, demonstrating that these cell lines are a good model to study this pathological mutation and extends our understanding of the mechanisms of altered contractile properties of this HCM MYBPC3-c.772G > A mutation.

2.
J Biol Chem ; 300(1): 105565, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103642

RESUMO

The biochemical SRX (super-relaxed) state of myosin has been defined as a low ATPase activity state. This state can conserve energy when the myosin is not recruited for muscle contraction. The SRX state has been correlated with a structurally defined ordered (versus disordered) state of muscle thick filaments. The two states may be linked via a common interacting head motif (IHM) where the two heads of heavy meromyosin (HMM), or myosin, fold back onto each other and form additional contacts with S2 and the thick filament. Experimental observations of the SRX, IHM, and the ordered form of thick filaments, however, do not always agree, and result in a series of unresolved paradoxes. To address these paradoxes, we have reexamined the biochemical measurements of the SRX state for porcine cardiac HMM. In our hands, the commonly employed mantATP displacement assay was unable to quantify the population of the SRX state with all data fitting very well by a single exponential. We further show that mavacamten inhibits the basal ATPases of both porcine ventricle HMM and S1 (Ki, 0.32 and 1.76 µM respectively) while dATP activates HMM cooperatively without any evidence of an SRX state. A combination of our experimental observations and theories suggests that the displacement of mantATP in purified proteins is not a reliable assay to quantify the SRX population. This means that while the structurally defined IHM and ordered thick filaments clearly exist, great care must be employed when using the mantATP displacement assay.


Assuntos
Trifosfato de Adenosina , Ensaios Enzimáticos , Miosina não Muscular Tipo IIA , Suínos , ortoaminobenzoatos , Animais , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Benzilaminas/farmacologia , Ensaios Enzimáticos/métodos , Ensaios Enzimáticos/normas , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/enzimologia , Ventrículos do Coração/metabolismo , Contração Miocárdica , Subfragmentos de Miosina/química , Subfragmentos de Miosina/metabolismo , Miosina não Muscular Tipo IIA/química , Miosina não Muscular Tipo IIA/metabolismo , ortoaminobenzoatos/metabolismo , Uracila/análogos & derivados , Uracila/farmacologia
3.
Circ Res ; 133(5): 430-443, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37470183

RESUMO

BACKGROUND: Modulating myosin function is a novel therapeutic approach in patients with cardiomyopathy. Danicamtiv is a novel myosin activator with promising preclinical data that is currently in clinical trials. While it is known that danicamtiv increases force and cardiomyocyte contractility without affecting calcium levels, detailed mechanistic studies regarding its mode of action are lacking. METHODS: Permeabilized porcine cardiac tissue and myofibrils were used for X-ray diffraction and mechanical measurements. A mouse model of genetic dilated cardiomyopathy was used to evaluate the ability of danicamtiv to correct the contractile deficit. RESULTS: Danicamtiv increased force and calcium sensitivity via increasing the number of myosins in the ON state and slowing cross-bridge turnover. Our detailed analysis showed that inhibition of ADP release results in decreased cross-bridge turnover with cross bridges staying attached longer and prolonging myofibril relaxation. Danicamtiv corrected decreased calcium sensitivity in demembranated tissue, abnormal twitch magnitude and kinetics in intact cardiac tissue, and reduced ejection fraction in the whole organ. CONCLUSIONS: As demonstrated by the detailed studies of Danicamtiv, increasing myosin recruitment and altering cross-bridge cycling are 2 mechanisms to increase force and calcium sensitivity in cardiac muscle. Myosin activators such as Danicamtiv can treat the causative hypocontractile phenotype in genetic dilated cardiomyopathy.


Assuntos
Cardiomiopatia Dilatada , Camundongos , Animais , Suínos , Cardiomiopatia Dilatada/tratamento farmacológico , Cálcio/fisiologia , Miocárdio , Miosinas , Miócitos Cardíacos , Cardiotônicos
4.
Sci Rep ; 13(1): 10319, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365215

RESUMO

We sought to establish a large animal model of inherited hypertrophic cardiomyopathy (HCM) with sufficient disease severity and early penetrance for identification of novel therapeutic strategies. HCM is the most common inherited cardiac disorder affecting 1 in 250-500 people, yet few therapies for its treatment or prevention are available. A research colony of purpose-bred cats carrying the A31P mutation in MYBPC3 was founded using sperm from a single heterozygous male cat. Cardiac function in four generations was assessed by periodic echocardiography and measurement of blood biomarkers. Results showed that HCM penetrance was age-dependent, and that penetrance occurred earlier and was more severe in successive generations, especially in homozygotes. Homozygosity was also associated with progression from preclinical to clinical disease. A31P homozygous cats represent a heritable model of HCM with early disease penetrance and a severe phenotype necessary for interventional studies aimed at altering disease progression. The occurrence of a more severe phenotype in later generations of cats, and the occasional occurrence of HCM in wildtype cats suggests the presence of at least one gene modifier or a second causal variant in this research colony that exacerbates the HCM phenotype when inherited in combination with the A31P mutation.


Assuntos
Cardiomiopatia Hipertrófica , Predisposição Genética para Doença , Animais , Masculino , Sêmen , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/veterinária , Mutação , Fenótipo , Proteínas do Citoesqueleto/genética , Miosinas Cardíacas/genética
5.
J Gen Physiol ; 155(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37000171

RESUMO

The timing and magnitude of force generation by a muscle depend on complex interactions in a compliant, contractile filament lattice. Perturbations in these interactions can result in cardiac muscle diseases. In this study, we address the fundamental challenge of connecting the temporal features of cardiac twitches to underlying rate constants and their perturbations associated with genetic cardiomyopathies. Current state-of-the-art metrics for characterizing the mechanical consequence of cardiac muscle disease do not utilize information embedded in the complete time course of twitch force. We pair dimension reduction techniques and machine learning methods to classify underlying perturbations that shape the timing of twitch force. To do this, we created a large twitch dataset using a spatially explicit Monte Carlo model of muscle contraction. Uniquely, we modified the rate constants of this model in line with mouse models of cardiac muscle disease and varied mutation penetrance. Ultimately, the results of this study show that machine learning models combined with biologically informed dimension reduction techniques can yield excellent classification accuracy of underlying muscle perturbations.


Assuntos
Contração Muscular , Músculo Esquelético , Camundongos , Animais , Músculo Esquelético/fisiologia , Contração Muscular/fisiologia , Mutação
6.
bioRxiv ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778318

RESUMO

Modulating myosin function is a novel therapeutic approach in patients with cardiomyopathy. Detailed mechanism of action of these agents can help predict potential unwanted affects and identify patient populations that can benefit most from them. Danicamtiv is a novel myosin activator with promising preclinical data that is currently in clinical trials. While it is known danicamtiv increases force and cardiomyocyte contractility without affecting calcium levels, detailed mechanistic studies regarding its mode of action are lacking. Using porcine cardiac tissue and myofibrils we demonstrate that Danicamtiv increases force and calcium sensitivity via increasing the number of myosin in the "on" state and slowing cross bridge turnover. Our detailed analysis shows that inhibition of ADP release results in decreased cross bridge turnover with cross bridges staying on longer and prolonging myofibril relaxation. Using a mouse model of genetic dilated cardiomyopathy, we demonstrated that Danicamtiv corrected calcium sensitivity in demembranated and abnormal twitch magnitude and kinetics in intact cardiac tissue. Significance Statement: Directly augmenting sarcomere function has potential to overcome limitations of currently used inotropic agents to improve cardiac contractility. Myosin modulation is a novel mechanism for increased contraction in cardiomyopathies. Danicamtiv is a myosin activator that is currently under investigation for use in cardiomyopathy patients. Our study is the first detailed mechanism of how Danicamtiv increases force and alters kinetics of cardiac activation and relaxation. This new understanding of the mechanism of action of Danicamtiv can be used to help identify patients that could benefit most from this treatment.

7.
bioRxiv ; 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36747691

RESUMO

Inherited mutations in contractile and structural genes, which decrease cardiomyocyte tension generation, are principal drivers of dilated cardiomyopathy (DCM)- the leading cause of heart failure 1,2 . Progress towards developing precision therapeutics for and defining the underlying determinants of DCM has been cardiomyocyte centric with negligible attention directed towards fibroblasts despite their role in regulating the best predictor of DCM severity, cardiac fibrosis 3,4 . Given that failure to reverse fibrosis is a major limitation of both standard of care and first in class precision therapeutics for DCM, this study examined whether cardiac fibroblast-mediated regulation of the heart's material properties is essential for the DCM phenotype. Here we report in a mouse model of inherited DCM that prior to the onset of fibrosis and dilated myocardial remodeling both the myocardium and extracellular matrix (ECM) stiffen from switches in titin isoform expression, enhanced collagen fiber alignment, and expansion of the cardiac fibroblast population, which we blocked by genetically suppressing p38α in cardiac fibroblasts. This fibroblast-targeted intervention unexpectedly improved the primary cardiomyocyte defect in contractile function and reversed ECM and dilated myocardial remodeling. Together these findings challenge the long-standing paradigm that ECM remodeling is a secondary complication to inherited defects in cardiomyocyte contractile function and instead demonstrate cardiac fibroblasts are essential contributors to the DCM phenotype, thus suggesting DCM-specific therapeutics will require fibroblast-specific strategies.

8.
Circulation ; 144(21): 1714-1731, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34672721

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is a complex disease partly explained by the effects of individual gene variants on sarcomeric protein biomechanics. At the cellular level, HCM mutations most commonly enhance force production, leading to higher energy demands. Despite significant advances in elucidating sarcomeric structure-function relationships, there is still much to be learned about the mechanisms that link altered cardiac energetics to HCM phenotypes. In this work, we test the hypothesis that changes in cardiac energetics represent a common pathophysiologic pathway in HCM. METHODS: We performed a comprehensive multiomics profile of the molecular (transcripts, metabolites, and complex lipids), ultrastructural, and functional components of HCM energetics using myocardial samples from 27 HCM patients and 13 normal controls (donor hearts). RESULTS: Integrated omics analysis revealed alterations in a wide array of biochemical pathways with major dysregulation in fatty acid metabolism, reduction of acylcarnitines, and accumulation of free fatty acids. HCM hearts showed evidence of global energetic decompensation manifested by a decrease in high energy phosphate metabolites (ATP, ADP, and phosphocreatine) and a reduction in mitochondrial genes involved in creatine kinase and ATP synthesis. Accompanying these metabolic derangements, electron microscopy showed an increased fraction of severely damaged mitochondria with reduced cristae density, coinciding with reduced citrate synthase activity and mitochondrial oxidative respiration. These mitochondrial abnormalities were associated with elevated reactive oxygen species and reduced antioxidant defenses. However, despite significant mitochondrial injury, HCM hearts failed to upregulate mitophagic clearance. CONCLUSIONS: Overall, our findings suggest that perturbed metabolic signaling and mitochondrial dysfunction are common pathogenic mechanisms in patients with HCM. These results highlight potential new drug targets for attenuation of the clinical disease through improving metabolic function and reducing mitochondrial injury.


Assuntos
Cardiomiopatia Hipertrófica/etiologia , Cardiomiopatia Hipertrófica/metabolismo , Suscetibilidade a Doenças , Metabolismo Energético , Mitocôndrias/genética , Mitocôndrias/metabolismo , Adulto , Idoso , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/terapia , Respiração Celular/genética , Biologia Computacional/métodos , Gerenciamento Clínico , Feminino , Perfilação da Expressão Gênica , Testes de Função Cardíaca , Humanos , Lipidômica , Masculino , Metaboloma , Metabolômica/métodos , Pessoa de Meia-Idade , Mitocôndrias/ultraestrutura , Mutação , Estresse Oxidativo , Espécies Reativas de Oxigênio , Transcriptoma
9.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34117120

RESUMO

Hypertrophic cardiomyopathy (HCM) is the most common inherited form of heart disease, associated with over 1,000 mutations, many in ß-cardiac myosin (MYH7). Molecular studies of myosin with different HCM mutations have revealed a diversity of effects on ATPase and load-sensitive rate of detachment from actin. It has been difficult to predict how such diverse molecular effects combine to influence forces at the cellular level and further influence cellular phenotypes. This study focused on the P710R mutation that dramatically decreased in vitro motility velocity and actin-activated ATPase, in contrast to other MYH7 mutations. Optical trap measurements of single myosin molecules revealed that this mutation reduced the step size of the myosin motor and the load sensitivity of the actin detachment rate. Conversely, this mutation destabilized the super relaxed state in longer, two-headed myosin constructs, freeing more heads to generate force. Micropatterned human induced pluripotent derived stem cell (hiPSC)-cardiomyocytes CRISPR-edited with the P710R mutation produced significantly increased force (measured by traction force microscopy) compared with isogenic control cells. The P710R mutation also caused cardiomyocyte hypertrophy and cytoskeletal remodeling as measured by immunostaining and electron microscopy. Cellular hypertrophy was prevented in the P710R cells by inhibition of ERK or Akt. Finally, we used a computational model that integrated the measured molecular changes to predict the measured traction forces. These results confirm a key role for regulation of the super relaxed state in driving hypercontractility in HCM with the P710R mutation and demonstrate the value of a multiscale approach in revealing key mechanisms of disease.


Assuntos
Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/fisiopatologia , Mutação/genética , Contração Miocárdica/genética , Miosinas Ventriculares/genética , Actinas/metabolismo , Animais , Fenômenos Biomecânicos , Cálcio/metabolismo , Linhagem Celular , Tamanho Celular , Predisposição Genética para Doença , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Miofibrilas/metabolismo
10.
JCI Insight ; 5(20)2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32931484

RESUMO

Dilated cardiomyopathy (DCM) is often associated with sarcomere protein mutations that confer reduced myofilament tension-generating capacity. We demonstrated that cardiac twitch tension-time integrals can be targeted and tuned to prevent DCM remodeling in hearts with contractile dysfunction. We employed a transgenic murine model of DCM caused by the D230N-tropomyosin (Tm) mutation and designed a sarcomere-based intervention specifically targeting the twitch tension-time integral of D230N-Tm hearts using multiscale computational models of intramolecular and intermolecular interactions in the thin filament and cell-level contractile simulations. Our models predicted that increasing the calcium sensitivity of thin filament activation using the cardiac troponin C (cTnC) variant L48Q can sufficiently augment twitch tension-time integrals of D230N-Tm hearts. Indeed, cardiac muscle isolated from double-transgenic hearts expressing D230N-Tm and L48Q cTnC had increased calcium sensitivity of tension development and increased twitch tension-time integrals compared with preparations from hearts with D230N-Tm alone. Longitudinal echocardiographic measurements revealed that DTG hearts retained normal cardiac morphology and function, whereas D230N-Tm hearts developed progressive DCM. We present a computational and experimental framework for targeting molecular mechanisms governing the twitch tension of cardiomyopathic hearts to counteract putative mechanical drivers of adverse remodeling and open possibilities for tension-based treatments of genetic cardiomyopathies.


Assuntos
Sinalização do Cálcio/genética , Cardiomiopatia Dilatada/genética , Coração/crescimento & desenvolvimento , Troponina C/genética , Substituição de Aminoácidos/genética , Animais , Cálcio/metabolismo , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Coração/fisiopatologia , Humanos , Camundongos , Camundongos Transgênicos , Mutação/genética , Contração Miocárdica/genética , Miocárdio/metabolismo , Miocárdio/patologia , Miofibrilas/genética , Miofibrilas/patologia , Sarcômeros/genética , Sarcômeros/patologia
11.
Circulation ; 142(17): 1667-1683, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-32806952

RESUMO

BACKGROUND: In patients with complex congenital heart disease, such as those with tetralogy of Fallot, the right ventricle (RV) is subject to pressure overload stress, leading to RV hypertrophy and eventually RV failure. The role of lipid peroxidation, a potent form of oxidative stress, in mediating RV hypertrophy and failure in congenital heart disease is unknown. METHODS: Lipid peroxidation and mitochondrial function and structure were assessed in right ventricle (RV) myocardium collected from patients with RV hypertrophy with normal RV systolic function (RV fractional area change, 47.3±3.8%) and in patients with RV failure showing decreased RV systolic function (RV fractional area change, 26.6±3.1%). The mechanism of the effect of lipid peroxidation, mediated by 4-hydroxynonenal ([4HNE] a byproduct of lipid peroxidation) on mitochondrial function and structure was assessed in HL1 murine cardiomyocytes and human induced pluripotent stem cell-derived cardiomyocytes. RESULTS: RV failure was characterized by an increase in 4HNE adduction of metabolic and mitochondrial proteins (16 of 27 identified proteins), in particular electron transport chain proteins. Sarcomeric (myosin) and cytoskeletal proteins (desmin, tubulin) also underwent 4HNE adduction. RV failure showed lower oxidative phosphorylation (moderate RV hypertrophy, 287.6±19.75 versus RV failure, 137.8±11.57 pmol/[sec×mL]; P=0.0004), and mitochondrial structural damage. Using a cell model, we show that 4HNE decreases cell number and oxidative phosphorylation (control, 388.1±23.54 versus 4HNE, 143.7±11.64 pmol/[sec×mL]; P<0.0001). Carvedilol, a known antioxidant did not decrease 4HNE adduction of metabolic and mitochondrial proteins and did not improve oxidative phosphorylation. CONCLUSIONS: Metabolic, mitochondrial, sarcomeric, and cytoskeletal proteins are susceptible to 4HNE-adduction in patients with RV failure. 4HNE decreases mitochondrial oxygen consumption by inhibiting electron transport chain complexes. Carvedilol did not improve the 4HNE-mediated decrease in oxygen consumption. Strategies to decrease lipid peroxidation could improve mitochondrial energy generation and cardiomyocyte survival and improve RV failure in patients with congenital heart disease.


Assuntos
Cardiopatias Congênitas/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Miocárdio/patologia , Disfunção Ventricular Direita/fisiopatologia , Animais , Criança , Pré-Escolar , Metabolismo Energético , Humanos , Masculino , Camundongos , Adulto Jovem
12.
Aging Cell ; 19(2): e13086, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31823466

RESUMO

Even in healthy aging, cardiac morbidity and mortality increase with age in both mice and humans. These effects include a decline in diastolic function, left ventricular hypertrophy, metabolic substrate shifts, and alterations in the cardiac proteome. Previous work from our laboratory indicated that short-term (10-week) treatment with rapamycin, an mTORC1 inhibitor, improved measures of these age-related changes. In this report, we demonstrate that the rapamycin-dependent improvement of diastolic function is highly persistent, while decreases in both cardiac hypertrophy and passive stiffness are substantially persistent 8 weeks after cessation of an 8-week treatment of rapamycin in both male and female 22- to 24-month-old C57BL/6NIA mice. The proteomic and metabolomic abundance changes that occur after 8 weeks of rapamycin treatment have varying persistence after 8 further weeks without the drug. However, rapamycin did lead to a persistent increase in abundance of electron transport chain (ETC) complex components, most of which belonged to Complex I. Although ETC protein abundance and Complex I activity were each differentially affected in males and females, the ratio of Complex I activity to Complex I protein abundance was equally and persistently reduced after rapamycin treatment in both sexes. Thus, rapamycin treatment in the aged mice persistently improved diastolic function and myocardial stiffness, persistently altered the cardiac proteome in the absence of persistent metabolic changes, and led to persistent alterations in mitochondrial respiratory chain activity. These observations suggest that an optimal translational regimen for rapamycin therapy that promotes enhancement of healthspan may involve intermittent short-term treatments.


Assuntos
Cardiomegalia/tratamento farmacológico , Complexo I de Transporte de Elétrons/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Miocárdio/metabolismo , Proteoma/efeitos dos fármacos , Sirolimo/farmacologia , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Animais , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Diástole/efeitos dos fármacos , Feminino , Identidade de Gênero , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteoma/metabolismo , Espectrometria de Massas em Tandem
13.
Nat Commun ; 10(1): 2685, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31213605

RESUMO

Hypertrophic cardiomyopathy (HCM) affects 1 in 500 people and leads to hyper-contractility of the heart. Nearly 40 percent of HCM-causing mutations are found in human ß-cardiac myosin. Previous studies looking at the effect of HCM mutations on the force, velocity and ATPase activity of the catalytic domain of human ß-cardiac myosin have not shown clear trends leading to hypercontractility at the molecular scale. Here we present functional data showing that four separate HCM mutations located at the myosin head-tail (R249Q, H251N) and head-head (D382Y, R719W) interfaces of a folded-back sequestered state referred to as the interacting heads motif (IHM) lead to a significant increase in the number of heads functionally accessible for interaction with actin. These results provide evidence that HCM mutations can modulate myosin activity by disrupting intramolecular interactions within the proposed sequestered state, which could lead to hypercontractility at the molecular level.


Assuntos
Miosinas Cardíacas/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/fisiopatologia , Contração Miocárdica/genética , Cadeias Pesadas de Miosina/metabolismo , Actinas/metabolismo , Animais , Miosinas Cardíacas/genética , Linhagem Celular , Movimento Celular/genética , Coração/fisiopatologia , Humanos , Camundongos , Mutação , Mioblastos , Cadeias Pesadas de Miosina/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
J Mol Cell Cardiol ; 119: 116-124, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29729251

RESUMO

Cardiac myosin binding protein-C (cMyBP-C) is an essential regulatory protein required for proper systolic contraction and diastolic relaxation. We previously showed that N'-terminal domains of cMyBP-C stimulate contraction by binding to actin and activating the thin filament in vitro. In principle, thin filament activating effects of cMyBP-C could influence contraction and relaxation rates, or augment force amplitude in vivo. cMyBP-C binding to actin could also contribute to an internal load that slows muscle shortening velocity as previously hypothesized. However, the functional significance of cMyBP-C binding to actin has not yet been established in vivo. We previously identified an actin binding site in the regulatory M-domain of cMyBP-C and described two missense mutations that either increased (L348P) or decreased (E330K) binding affinity of recombinant cMyBP-C N'-terminal domains for actin in vitro. Here we created transgenic mice with either the L348P or E330K mutations to determine the functional significance of cMyBP-C binding to actin in vivo. Results showed that enhanced binding of cMyBP-C to actin in L348P-Tg mice prolonged the time to end-systole and slowed relaxation rates. Reduced interactions between cMyBP-C and actin in E330K-Tg mice had the opposite effect and significantly shortened the duration of ejection. Neither mouse model displayed overt systolic dysfunction, but L348P-Tg mice showed diastolic dysfunction presumably resulting from delayed relaxation. We conclude that cMyBP-C binding to actin contributes to sustained thin filament activation at the end of systole and during isovolumetric relaxation. These results provide the first functional evidence that cMyBP-C interactions with actin influence cardiac function in vivo.


Assuntos
Citoesqueleto de Actina/genética , Proteínas de Transporte/genética , Sarcômeros/metabolismo , Sístole/fisiologia , Citoesqueleto de Actina/metabolismo , Actinas/genética , Sequência de Aminoácidos/genética , Animais , Sítios de Ligação , Diástole/genética , Diástole/fisiologia , Feminino , Humanos , Masculino , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosforilação , Mutação Puntual/genética , Ligação Proteica , Domínios Proteicos/genética , Sarcômeros/patologia , Sístole/genética
15.
Circ Res ; 122(2): 282-295, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29233845

RESUMO

RATIONALE: Mitochondria play a dual role in the heart, responsible for meeting energetic demands and regulating cell death. Paradigms have held that mitochondrial fission and fragmentation are the result of pathological stresses, such as ischemia, are an indicator of poor mitochondrial health, and lead to mitophagy and cell death. However, recent studies demonstrate that inhibiting fission also results in decreased mitochondrial function and cardiac impairment, suggesting that fission is important for maintaining cardiac and mitochondrial bioenergetic homeostasis. OBJECTIVE: The purpose of this study is to determine whether mitochondrial fission and fragmentation can be an adaptive mechanism used by the heart to augment mitochondrial and cardiac function during a normal physiological stress, such as exercise. METHODS AND RESULTS: We demonstrate a novel role for cardiac mitochondrial fission as a normal adaptation to increased energetic demand. During submaximal exercise, physiological mitochondrial fragmentation results in enhanced, rather than impaired, mitochondrial function and is mediated, in part, by ß1-adrenergic receptor signaling. Similar to pathological fragmentation, physiological fragmentation is induced by activation of dynamin-related protein 1; however, unlike pathological fragmentation, membrane potential is maintained and regulators of mitophagy are downregulated. Inhibition of fission with P110, Mdivi-1 (mitochondrial division inhibitor), or in mice with cardiac-specific dynamin-related protein 1 ablation significantly decreases exercise capacity. CONCLUSIONS: These findings demonstrate the requirement for physiological mitochondrial fragmentation to meet the energetic demands of exercise, as well as providing additional support for the evolving conceptual framework, where mitochondrial fission and fragmentation play a role in the balance between mitochondrial maintenance of normal physiology and response to disease.


Assuntos
Adaptação Fisiológica/fisiologia , Metabolismo Energético/fisiologia , Dinâmica Mitocondrial/fisiologia , Condicionamento Físico Animal/fisiologia , Adaptação Fisiológica/efeitos dos fármacos , Animais , Metabolismo Energético/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Dinâmica Mitocondrial/efeitos dos fármacos , Condicionamento Físico Animal/métodos , Quinazolinonas/farmacologia
16.
JCI Insight ; 2(9)2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28469078

RESUMO

Combined pulmonary insufficiency (PI) and stenosis (PS) is a common long-term sequela after repair of many forms of congenital heart disease, causing progressive right ventricular (RV) dilation and failure. Little is known of the mechanisms underlying this combination of preload and afterload stressors. We developed a murine model of PI and PS (PI+PS) to identify clinically relevant pathways and biomarkers of disease progression. Diastolic dysfunction was induced (restrictive RV filling, elevated RV end-diastolic pressures) at 1 month after generation of PI+PS and progressed to systolic dysfunction (decreased RV shortening) by 3 months. RV fibrosis progressed from 1 month (4.4% ± 0.4%) to 3 months (9.2% ± 1%), along with TGF-ß signaling and tissue expression of profibrotic miR-21. Although plasma miR-21 was upregulated with diastolic dysfunction, it was downregulated with the onset of systolic dysfunction), correlating with RV fibrosis. Plasma miR-21 in children with PI+PS followed a similar pattern. A model of combined RV volume and pressure overload recapitulates the evolution of RV failure unique to patients with prior RV outflow tract surgery. This progression was characterized by enhanced TGF-ß and miR-21 signaling. miR-21 may serve as a plasma biomarker of RV failure, with decreased expression heralding the need for valve replacement.

17.
Cell Rep ; 17(11): 2857-2864, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27974200

RESUMO

Hypertrophic cardiomyopathy (HCM) is a heritable cardiovascular disorder that affects 1 in 500 people. A significant percentage of HCM is attributed to mutations in ß-cardiac myosin, the motor protein that powers ventricular contraction. This study reports how two early-onset HCM mutations, D239N and H251N, affect the molecular biomechanics of human ß-cardiac myosin. We observed significant increases (20%-90%) in actin gliding velocity, intrinsic force, and ATPase activity in comparison to wild-type myosin. Moreover, for H251N, we found significantly lower binding affinity between the S1 and S2 domains of myosin, suggesting that this mutation may further increase hyper-contractility by releasing active motors. Unlike previous HCM mutations studied at the molecular level using human ß-cardiac myosin, early-onset HCM mutations lead to significantly larger changes in the fundamental biomechanical parameters and show clear hyper-contractility.


Assuntos
Actinas/genética , Cardiomiopatia Hipertrófica/genética , Proteínas Motores Moleculares/genética , Miosinas Ventriculares/genética , Actinas/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Cardiomiopatia Hipertrófica/fisiopatologia , Genótipo , Humanos , Mutação , Contração Miocárdica/genética , Miosinas Ventriculares/química , Miosinas Ventriculares/metabolismo
18.
J Mol Cell Cardiol ; 94: 65-71, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27021517

RESUMO

Cardiac myosin binding protein-C (cMyBP-C) is a structural and regulatory component of cardiac thick filaments. It is observed in electron micrographs as seven to nine transverse stripes in the central portion of each half of the A band. Its C-terminus binds tightly to the myosin rod and contributes to thick filament structure, while the N-terminus can bind both myosin S2 and actin, influencing their structure and function. Mutations in the MYBPC3 gene (encoding cMyBP-C) are commonly associated with hypertrophic cardiomyopathy (HCM). In cardiac cells there exists a population of myosin heads in the super-relaxed (SRX) state, which are bound to the thick filament core with a highly inhibited ATPase activity. This report examines the role cMyBP-C plays in regulating the population of the SRX state of cardiac myosin by using an assay that measures single ATP turnover of myosin. We report a significant decrease in the proportion of myosin heads in the SRX state in homozygous cMyBP-C knockout mice, however heterozygous cMyBP-C knockout mice do not significantly differ from the wild type. A smaller, non-significant decrease is observed when thoracic aortic constriction is used to induce cardiac hypertrophy in mutation negative mice. These results support the proposal that cMyBP-C stabilises the thick filament and that the loss of cMyBP-C results in an untethering of myosin heads. This results in an increased myosin ATP turnover, further consolidating the relationship between thick filament structure and the myosin ATPase.


Assuntos
Miosinas Cardíacas/metabolismo , Proteínas de Transporte/genética , Miócitos Cardíacos/metabolismo , Animais , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Cardiomiopatia Hipertrófica/fisiopatologia , Genótipo , Camundongos , Camundongos Knockout , Fosforilação , Sarcômeros/metabolismo
19.
Arch Biochem Biophys ; 601: 133-40, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-26777460

RESUMO

Mutations in MYBPC3, the gene encoding cardiac myosin binding protein C (cMyBP-C), are a major cause of hypertrophic cardiomyopathy (HCM). While most mutations encode premature stop codons, missense mutations causing single amino acid substitutions are also common. Here we investigated effects of a single proline for alanine substitution at amino acid 31 (A31P) in the C0 domain of cMyBP-C, which was identified as a natural cause of HCM in cats. Results using recombinant proteins showed that the mutation disrupted C0 structure, altered sensitivity to trypsin digestion, and reduced recognition by an antibody that preferentially recognizes N-terminal domains of cMyBP-C. Western blots detecting A31P cMyBP-C in myocardium of cats heterozygous for the mutation showed a reduced amount of A31P mutant protein relative to wild-type cMyBP-C, but the total amount of cMyBP-C was not different in myocardium from cats with or without the A31P mutation indicating altered rates of synthesis/degradation of A31P cMyBP-C. Also, the mutant A31P cMyBP-C was properly localized in cardiac sarcomeres. These results indicate that reduced protein expression (haploinsufficiency) cannot account for effects of the A31P cMyBP-C mutation and instead suggest that the A31P mutation causes HCM through a poison polypeptide mechanism that disrupts cMyBP-C or myocyte function.


Assuntos
Cardiomiopatia Hipertrófica/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Haploinsuficiência , Mutação de Sentido Incorreto , Alanina/química , Animais , Gatos , Dicroísmo Circular , Códon de Terminação , Coração/fisiopatologia , Imuno-Histoquímica , Células Musculares/citologia , Mutação , Miocárdio/metabolismo , Prolina/química , Conformação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sarcômeros/metabolismo
20.
FASEB J ; 30(4): 1464-79, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26675706

RESUMO

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a powerful platform for uncovering disease mechanisms and assessing drugs for efficacy/toxicity. However, the accuracy with which hiPSC-CMs recapitulate the contractile and remodeling signaling of adult cardiomyocytes is not fully known. We used ß-adrenergic receptor (ß-AR) signaling as a prototype to determine the evolution of signaling component expression and function during hiPSC-CM maturation. In "early" hiPSC-CMs (less than or equal to d 30), ß2-ARs are a primary source of cAMP/PKA signaling. With longer culture, ß1-AR signaling increases: from 0% of cAMP generation at d 30 to 56.8 ± 6.6% by d 60. PKA signaling shows a similar increase: 15.7 ± 5.2% (d 30), 49.8 ± 0.5% (d 60), and 71.0 ± 6.1% (d 90). cAMP generation increases 9-fold from d 30 to 60, with enhanced coupling to remodeling pathways (e.g., Akt and Ca(2+)/calmodulin-dependent protein kinase type II) and development of caveolin-mediated signaling compartmentalization. By contrast, cardiotoxicity induced by chronic ß-AR stimulation, a major component of heart failure, develops much later: 5% cell death at d 30vs 55% at d 90. Moreover, ß-AR maturation can be accelerated by biomechanical stimulation. The differential maturation of ß-AR functionalvs remodeling signaling in hiPSC-CMs has important implications for their use in disease modeling and drug testing. We propose that assessment of signaling be added to the indices of phenotypic maturation of hiPSC-CMs.-Jung, G., Fajardo, G., Ribeiro, A. J. S., Kooiker, K. B., Coronado, M., Zhao, M., Hu, D.-Q., Reddy, S., Kodo, K., Sriram, K., Insel, P. A., Wu, J. C., Pruitt, B. L., Bernstein, D. Time-dependent evolution of functionalvs remodeling signaling in induced pluripotent stem cell-derived cardiomyocytes and induced maturation with biomechanical stimulation.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Transdução de Sinais/fisiologia , Fenômenos Biomecânicos , Cálcio/metabolismo , Diferenciação Celular/genética , Células Cultivadas , AMP Cíclico/metabolismo , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Immunoblotting , Células-Tronco Pluripotentes Induzidas/metabolismo , Microscopia Confocal , Miócitos Cardíacos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...